
Development of an Electronic Commerce Portal System
using a Specific Software Development Process

Volker Gruhn1, Martin Mocker2, Lothar Schöpe3
1 Universität Dortmund, Fachbereich Informatik, Lehrstuhl Software-Technologie

Baroper Str. 301, D-44227 Dortmund, Germany
volker.gruhn@uni-dortmund.de

2 adesso AG

Stockholmer Allee 24, D-44269 Dortmund, Germany
martin.mocker@adesso.de

3 Informatik Centrum Dortmund e.V., Abt. Software-Technik
Joseph-v.-Fraunhofer-Str. 20, D-44227 Dortmund, Germany

lothar.schoepe@icd.de

Abstract
The development of electronic commerce (EC) systems is
subject to different conditions than that of conventional software
systems. Consequently, software development processes used
for conventional systems to date need to be adapted to these new
conditions. This includes the introduction of new activities to the
development process and the removal of others. In addition, the
roles involved in the development process, their tasks,
qualifications and the software tools used by them, are different
to other processes. An adapted process must cope with important
idiosyncrasies of EC system development: EC systems typically
have a high degree of interaction, which makes factors like
ergonomics, didactics and psychology especially important in
the development of user interfaces. Typically, they also have a
high degree of integration with existing software systems such
as legacy or groupware systems. Integration techniques have to
be selected systematically in order not to endanger the whole
software development process. Furthermore, the approach to the
development of EC systems should take into account the "time-
to-market" factor and allow development time reduction while
retaining quality. This paper introduces and describes an adapted
software development process for EC systems and its special
features using the development of an EC portal system as an
example. .

Keywords: Electronic commerce, software development process,
application integration, component based development,
distributed architecture design.

1 Introduction
In this paper, EC is defined as conducting transactions of
any kind by means of electronic media, especially the
Internet. The roles of suppliers and customers in these
transactions can be adopted by different parties, such as
consumers (C), administrations (A), businesses (B) or

Copyright © 2002, Australian Computer Society, Inc. This
paper appeared at the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia. Conferences in
Research and Practice in Information Technology, Vol. 10 (pp.
93-101). James Noble and John Potter, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

even their employees (E) (Shaw 2000). Depending on the
type of parties participating in an EC transaction, one is
talking about B2B, B2C, B2E, B2A, C2C EC etc. The
parties involved in EC transactions use information
technology (IT) systems to automate their transactions
(Chesher, and Kaura 1998). The examples used in this
paper are based on B2E EC, where an EC portal system is
used for automation but can also be transferred to other
types of EC. An EC portal system is an integration
platform for different software systems: conventional (i.e.
non EC) software systems such as legacy and office
systems as well as other EC based systems such as shop
systems.

In the same way that conventional application software
systems are developed according to conventional
software development processes, special software
development processes are necessary to delineate the
development of EC systems (Bayer, Junginger, and Kühn
2000, Harrison, Ossher, and Tarr 2000, Gruhn, and
Schöpe 2001, Haire, Henderson-Sellers, and Lowe 2001).
These software development processes for EC systems
differ from those for conventional application software
systems in the following aspects:

• They include provisions for new or adapted activities
and roles performing them:

o System integration is very important in EC
settings, because often, many heterogeneous
systems have to be integrated and these do not
necessarily have a long lifetime. Therefore the
add-on or replacement of components should be
planned beforehand.

o The need for attractive and user-friendly user
interfaces is very pressing. One reason for this is
that often, users are of various kinds with
differing backgrounds, not known personally
making it difficult to obtain feedback. Roles for
graphical design activities are needed in order to
provide these user interfaces.

o Peculiarities in EC customer behaviour make
workload hard to plan. Therefore, performance

planning has to be considered strongly for EC
systems. Roles and activities that deal with these
issues are needed.

o Content is an integral part of most EC systems
and important regarding quality, quantity and
frequency of change. Roles and activities for
managing this content are needed.

• They must take into account that EC software
development is a very distributed process. That is,
the roles mentioned above are often adopted by
different parties: software companies develop
software components, multimedia companies
develop graphical features for the interface and
specialized content providers supply the content.

• They have to cope with high time pressure expressed
in a shorter time-to-market, yet at the same time
preserving the required quality, especially regarding
non-functional requirements such as extensibility.

These aspects are now discussed in more detail:

Performance is a second factor influencing user
acceptance of EC systems. This becomes more evident
when looking at the negative effects of an EC system
with poor performance: users tend to quit their visit to a
site after waiting for 8-15 seconds (Nielsen 2000) for a
response, resulting in loss of revenue and image for the
company associated with the site. Therefore,
characterization of customer behaviour, workload
forecasting and performance modelling become very
prominent activities. Two characteristics of EC customer
behaviour aggravate workload characterization in EC
settings: peak-like request bursts and high-volume data
requests that are not typically found in conventional
software systems (Menascé, and Almeida 2000).

In EC system settings, many predefined building blocks,
like shop systems, content management systems etc., are
often developed by small software suppliers with special
expertise in their field. Companies generally do not want
to be dependent on these small suppliers. So, when
designing an EC system, one should have in mind that
some components might be replaced and others might be
added at a later point in time. Thus, focus should be put
on system integration activities during the software
development from an early stage on. If an EC system
needs to be integrated into an existing infrastructure, the
requisite methods, concepts and software tools for the
integration must be available (Noffsinger, Niedbalski,
Blanks, and Emmart 1998). The methods, concepts and
software tools used, as well as the software developers
involved, depend on how the integration is undertaken.
For example, security aspects (use of firewalls,
cryptography etc.) might have to be taken into account.
These security aspects then not only have to be
considered during implementation, but also during the
design of the EC system. Also, it must be decided if
direct sales processes for products or services should be
electronically supported by an EC system. If support for
products is required, the EC system has to be integrated
with an open or closed inventory control system of the
merchant. Integration with conventional domain-specific,
highly individual application software systems is also
usually required when supporting direct sales processes
for services. These individual application software
systems, termed ‘legacy systems’, are used by all kinds of
businesses such as insurance companies, governmental
agencies, banks, power utilities etc. (Lamond, and
Edelheit 1999).

The functionality of inventory control systems is often
covered by ERP systems of different software
manufacturers (e.g. SAP, Oracle, Baan, Sage, PeopleSoft
etc.). These ERP solutions provide interfaces (APIs) for
integration with other software systems. For example, this
makes it possible to offer integrated solutions between
Intershop and SAP, OpenShop and Sage or Oracle. In

some circumstances, the integration of several different
inventory systems or individual application software
systems may be necessary. This is usually the case for the
implementation of EC malls or EC portals.

While conventional application software systems might
win user acceptance mainly through their functionality
and can be positioned against market competitors in that
way, a special class of EC systems (e.g. shop systems)
also have to win user (i.e. customer) acceptance via the
user interface. The user interface not only presents
content in a certain layout, but also guides and supports
the user. The tasks concerning the selection of content
and its presentation are not included in most conventional
software development processes. The roles performing
them are specialists for software ergonomics, didactics,
graphical design and psychology.

Another major factor in acceptance of many EC systems
(e.g. shop systems) is being up-to-date – not only
regarding the content, but equally important, content
presentation. In most conventional software application
systems, data of different types and structures is managed
and processed in different ways. The more data managed
by the application software system, the more up-to-date it
is. In addition, for a shop system to stay up-to-date, the
presentation of its content must be kept up-to-date. This
means that even if the data remains mostly unchanged, its
presentation is subject to change over time. In the
productive/maintenance phase, the functionality of a shop
system may remain largely constant, while the
presentation of the content is modified and adapted at
certain time intervals by specialists for software
ergonomics, didactics, graphic design and psychology.
Extensive statistical testing permits the measurement of
customer acceptance levels with time. And from these
statistics, it can be deduced which parts of the
presentation should be changed.

The roles involved in the development of an EC system
are more specialized and more widely spread between
participating suppliers than is normally the case with
conventional software systems development. Some of the
roles and their activities have already been mentioned:
specialists for software ergonomics, didactics, screen
design and psychology, performance engineers, content
engineers and software developers with expertise in a
multitude of technologies such as programming
languages like Java, component models and other
frameworks such as Enterprise Java Beans, Servlets or

Java Server Pages, or middleware at different levels such
as XML, SOAP and RMI. In most cases, this variety of
required skills is not found in one single supplier such as
a software company. Collaboration between many
suppliers with specialized skills such as multimedia
design companies, software companies including
freelancers as experts and content providers is far more
likely to be the case. A process for the development of
EC systems has to take this distribution into account, by
considering contract settlement (legal and technical in
terms of interface contracts) and means for easing
communication between suppliers.

Depending on the course of action within the software
development process, the different roles use different
software tools, such as shop systems (Intershop,
Openshop etc.), content management systems
(Hyperwave, Firstspirit, Pirobase etc.) or software
development/programming environments (JBuilder,
Together J etc.).

As argued previously, when developing EC systems, a
special software development process is needed to take
into account these factors. This paper presents such a
process that has been defined during the development of a
B2E EC portal system: this portal system is presented in
section 2 and demonstrates some of the above-mentioned
features of EC systems stimulating the demand for
adapted software development processes. Section 3
describes the actual process that dealt with these features
and resulted in the portal system. Section 4 summarizes
the main aspects and draws conclusions from the work on
processes suited to support the development of EC
systems.

2 The IPSI Electronic Commerce Portal
An EC portal for insurances was designed and
implemented as part of a software engineering project
(Book, Gruhn, and Schöpe 2000). This portal – called
Internet Portal System for Insurances (IPSI) – is intended
to provide support for insurance agents with their daily
work. The main goal of the portal is to support business-
to-employee (B2E) processes (Lincke, and Zimmermann
1999). Thus, the communication between management
and employees (in this case between an insurance
company and its agents), but also between employees
themselves is supported by providing information about
the product portfolio, tariffs and customer contacts via the
EC portal and its subsystems. This portal system
demonstrates some of the idiosyncrasies of EC systems
that generate the demand for adapted software
development processes.

During the requirements analysis phase of the project, it
was recognized that the EC portal serves as an integration
platform for different heterogeneous subsystems
(Hasselbring, Koschel, and Mester 2001). Based on an n-
tier-architecture, the user interface and data repository1

1 The management of data (e.g personal addresses) is
taken over by a traditional host system like IBM MVS
(for remote data) and additionally by a local office system
like Lotus Notes or Microsoft Outlook (for local data).

are separated from the functional business logic
(Lewandowski 1998) that resides in multiple application
components (called subsystems). At the functional
business logic level, the following subsystems of an EC
portal were identified, which show the need for focusing
on integrating many different systems:

Office System: The office system manages any agent’s
customer contact addresses and scheduled appointments.
For addresses, a distinction between remote and local
data is made. While remote data is managed by the
partner management system of the insurance company,
local data is managed by an office system on the agent’s
computer, to satisfy his or her privacy requirements.

Content Management System: Information of any kind
is supplied by the content management system. Each
insurance company employee (e.g. management, back
office employees or agents) can provide information for
all other participants. Based on individual access rights,
employees can retrieve information (e.g. new product
portfolio, handbooks, marketing materials, comments on
legal decisions in the context of insurances etc.) from or
store information in the content management system for
every other employee. The content management system
organizes this information using different views and
access rights.

Procurement System: The procurement system offers
consumer goods (e.g. computer equipment, books or
writing material) and services (e.g. training courses).
Every insurance agent can order consumer goods for his
daily work. Management can monitor the orders and
control the costs generated by their agents.

Communications System: The communications system
represents the interface to telecommunications media
(mobile phones, fax and e-mail). The communications
system is able to send documents, notifications or
reminders by e-mail, Short Message Service (SMS) or
fax. Notifications and reminders are sent at any user-
defined point of time set by the office system.

Portal Administration System: The portal
administration system serves as the administration center
and therefore provides functions to add, update or delete
portal user data and other administrative features. The
administration system allows for a single-sign-on, i.e. EC
portal users do not need to authorize themselves at each
subsystem of the portal separately. The second purpose of
the portal administration system is the analysis and
presentation of logging information provided by the
subsystems.

Search System: The search system allows the user to
search for information in the entire portal, based either on
full text search or predefined keywords. The result of a
search request can include appointments, customer
addresses, documents from the content management

Access to remote data is provided by the electronic
commerce portal via an XML interface. The
synchronization of remote and local data is also
guaranteed by the electronic commerce portal.

system, goods ordered or a combination of these
elements.

Legacy System: A legacy system is any external system
already existing at the provider’s (in this example the
insurance company) site, which has to be connected to the
EC portal. Legacy systems are often implemented as host
applications (Coyle 2000), such as a partner management
system storing contract data of people insured in the case
of IPSI.

The portal user interface consists of Web pages written in
Hypertext Markup Language (HTML). For management
of administrative data, a relational database management
system is used in addition to the subsystems’ own
repositories.

The system architecture had to fulfil several non-
functional requirements pivotal to most EC systems, but
especially to portals integrating many different systems.
Among the most important requirements were the
following:

• Not being dependent on the output medium (HTML,
WML etc.). In other words, switching from one
medium to another should be possible without
significant porting efforts. Additionally, when
changing the user interface, business logic should
remain untouched, allowing for the distribution of
development between user interface specialists and
software developers. Therefore, presentation logic
had to be separated from business logic.

• Being extendable in functionality. Once the core
system was developed, it had to be easy for
developers to add portal functionality without deeper
knowledge of the inner operation of the system.
Therefore, implementation details of middleware
technology had to be hidden from the application
developers.

• Being able to integrate several existing systems
seamlessly. Not only should developers be able to
add portal functionality for already integrated
systems later, but they should also be able to connect
other systems completely unknown at the time of
architecture design to provide access to these systems
via the web through the portal. This aspect is also
important when exchanging systems with equal
functionality (e.g. when updating to a new version of
a shop system or when switching to a different shop
system manufacturer).

These requirements led to the development of the system
architecture depicted in Figure 1.

Figure 1: System Architecture

Office, content management, procurement, legacy and
communications are all external systems. To avoid
building these from scratch, it was decided to integrate
existing solutions into the EC portal.

Book, Gruhn, and Schöpe (2000) describe the
architecture of the portal system in detail. Only a short
overview is given here, with special focus on the
previously mentioned requirements of EC systems.

The user interacts with the EC portal via a Web browser
(system architecture also allows other user agents such as
mobile phones). The actual “work” of the system is done
by the subsystems: the office subsystem stores the agent’s
contacts, appointments, tasks etc., the content
management system manages all the published data, the
legacy systems handles contract data and so on. To
connect the subsystems to the rest of the application
while hiding the specifics of any subsystem, we used
adaptors acting as a façade of a subsystem. If a subsystem
is replaced or a new subsystem is added, only the
adaptors have to be replaced.

To be able to add new functionality (which can be the
case even if one is not changing subsystems), a highly
configurable dispatcher-controller mechanism using the
Java Reflection API was utilized. In this setting, the
dispatcher is responsible for locating a controller able to
handle the user’s request. A controller implements the
workflow necessary to fulfil one request (Hoffner,
Ludwig, Grefen, and Aberer 2001), especially by
interacting with the subsystems’ adaptor interfaces.
Controllers and subsystem adaptors communicate by
exchanging business objects (Baker, and Geraghty 1998)
i.e. entities that are central to the EC portal’s workflow.
The following business objects are therefore known to all
controllers and subsystems:

• User

• Contact

• Appointment

• Task

• Message

• Shop Item

• Order

• Order History

• Search Request

• Search Result

Figure 2: Electronic commerce portal development process model

To schedule an appointment, for example, the respective
workflow controller creates an appointment object from
data received by the dispatcher and passes it to a method
of the office subsystem (or to be precise: the subsystem’s
adaptor) that adds the appointment to the user’s calendar.
If the user has chosen to be reminded of the appointment
by e-mail in time, the workflow controller additionally
creates a message object, connects a copy of the
appointment object to it and passes it to the
communications system which will queue it for e-mail
delivery at the time requested by the user.

To separate the business logic contained in the controllers
and maintained by software developers from the
presentation logic maintained by user interface
specialists, we employed a controller-formatter
mechanism. The source of the user’s request (e.g. a Web
browser) determines the output medium and tells the
dispatcher which formatter (e.g. a WML- vs. a HTML-
formatter) to call after the controller finished its task.
When changing the graphical user interface or adding a
new output medium, only the formatters need to be
modified by the design specialist, leaving the business
logic completely unchanged.

To cope with performance considerations and other
technical system requirements, most external subsystems
and the Web server run on separate computers. This
distributed architecture requires a middleware like RMI
to coordinate the invocation of methods and passing of
objects among the different components.

3 Process Description
The software development process for the development
of a certain IT system is defined by a process model. A
process model presents all the activities (in a certain
order), the required tools and the created intermediate or

final products necessary to achieve the process’s purpose.
A process model is usually tailored to a certain
development project. A process, on the other hand, is the
execution of a process model (in the object-oriented way
of thinking, a process is an instance of a process model),
i.e. the activities that are delineated in the process model
are actually performed.

Although a formal specification of a software
development process in the form of a process model
simplifies its support by workflow systems, it is not
mandatory for achieving a positive effect in software
development. In order to reach consensus about the
software development process among all those involved,
an informal though structured and comprehensive
description can be sufficient. A company's knowledge of
best practices was and is often described in internal
documents and development guidelines. For example,
ISO 9000 (part 1-3) defines only the contents of the
description of best practices and development guidelines,
but not their notation. However, informal specifications
relying on natural language bear the danger of
misinterpretation because they usually have enormous
volume, and some concepts, dependencies and
prerequisites cannot always be formulated precisely.

The process model for the development of an actual EC
system – namely the IPSI electronic commerce portal – is
presented schematically in Figure 2, using the Funsoft net
notation (Deiters, and Gruhn 1994). In order to reduce the
complexity of presentation and increase the number of
levels of abstraction, this notation allows distinction
between elementary tasks (e.g. write story book, perform
test data creation) and subprocess models (e.g.
requirements analysis, subsystem selection, prototype
development), which can again contain elementary tasks
and subprocess models.

The object-oriented design using UML, prototype
development, implementation of adaptors to integrate
software systems as subsystems of the EC portal using
the Java programming language and the use of a
middleware (CORBA/RMI) for communication within
the portal are all represented in this software development
process. The development process also shows that the use
cases described in UML are an important prerequisite for
several sub process models such as the user interface
specification and development.

In the following, the development process of the IPSI
electronic commerce portal is described in reduced form
with reference to the subprocess models, but not their
internal details. The subprocess models for system design
and implementation are not described, because in contrast
to other activities, they did not show as many electronic
commerce-specific deviations from the design and
implementation activities of conventional development
processes.

3.1 Requirements Analysis

The initial list of requirements resulting from the
competition analysis is the starting point for the creation
of a requirements catalog for the entire EC portal to be
developed. This requirements catalog is checked for
contradictions, redundancy and completeness in several
ways; for example, by interviewing users and providers.
Users are people or groups of people who will actually
use the portal, while providers are persons or groups of
persons who will run the portal in order to provide its
services to the users (in the context of this paper, users
are insurance agents and the provider is the insurance
company). Both users and providers have different,
potentially competing requirements.

Requirements analysis starts with a competition analysis,
subsequent proposal and contract evaluation, and project
initialization. After this, the functional and non-functional
requirements for the EC software system are identified.

For the development of the EC portal for insurance
agents, a competition analysis should determine if other
software companies already offered a similar portal and
which target groups those companies aimed at.
Afterwards, the product idea was presented to several
insurance companies, and one insurance company was
won as a partner and potential client. During the proposal
and contract evaluation, the feasibility of the client's
requirements was clarified. The goal was a contract basis
that was stable in every regard (content-wise, legal,
mercantile) and the creation of a basis on which a
software system could be developed that met the client's
functional and technical requirements.

Identification and description of the portal's functionality
and the priority-based structuring of these functions are
very important tasks. Functionality must be sufficient to
cover all client requirements, and yet must offer
something unique compared to competitors’ offers in
order to gain competitive advantage. It must also contain
opportunities for further development to ensure future
competitive advantage.

High product functionality can be used to secure market
advantage over competitor products. However, the
realization of high functionality requires a certain effort,
mirrored in the amount of time it takes to realize an EC
system. Thus, advantage can also be gained by securing
early market appearance of the EC system (“first mover
advantage”). This means that, according to the "time-to-
market" concept, EC software systems in particular need
to be quickly developed and introduced to the market.
The identification of requirements and the assignment of
priorities to those requirements with attention to their
impact on development time is a highly significant task
when developing EC systems. To tackle the time-to-
market problem, the bifocal approach proposed by Laartz,

Scherdin, Cafarelli, and Hjartar (2000) can be used. This
approach suggests building an EC system in two stages:
first, requirements that are considered most critical
regarding user acceptance (e.g. those requirements
already covered by competitors identified during the
competition analysis) are implemented in a first version
of a system as quickly as possible, ignoring attributes
such as reusability, scalability or flexibility. At the same
time or shortly after the development of the system’s first
version is started, an architecture is designed which
satisfies all functional and also non-functional
requirements for a long-term system. The second system
replaces the first once it is finished.

During the interviews for the IPSI portal, it became clear
that some insurance companies already used supporting
systems for their agents. These systems were examined in
order to identify further requirements. After consolidating
all requirements from the different sources, the
requirements catalog was corrected and extended as
required, and requirements re-checked for errors.

3.2 Subsystem Selection
In most cases, EC systems are not developed
independently of an existing hardware and software
infrastructure. Usually, the EC systems have to be
integrated into the existing infrastructure by sharing data
with its systems. However, the sharing of data between
the EC system and existing software systems may not
always be sufficient – sometimes, the use of existing
functionality is necessary. Thus, the IPSI electronic
commerce portal exchanges data with its subsystems as
well as with the database systems of the insurance
company (e.g. UDS for BS2000). In this way, the portal
can supply the insurance agent with data of people
insured and their contracts. Furthermore, the portal needs
the functionality of a complex tariff computation module,
e.g. for a life insurance. Existing software systems, such
as the latter are termed legacy systems. In order to realize
each subsystem, it must be decided if existing software
systems fulfil the client's requirements, and if an existing
software system can be integrated or if it is necessary to
develop new software.

For the IPSI electronic commerce portal, it was decided
to integrate existing software systems for most
subsystems. This decision was followed by market
analysis to determine which existing systems should be
used. The analysis also took into account non-functional

criteria such as price, availability, support, platform, and
possibilities of integrating the system (discussed in the
next section), and led to the selection of Microsoft
Outlook 2000, Pirobase 4.0, SmartStore 2.0 and several
freeware communication applications for the subsystems
office, content management, procurement and
communications respectively (see Figure 3).

Figure 3: Subsystems of the electronic commerce

portal

3.3 Prototype development
In addition, it had to be determined if the software
systems selected provided a programming interface
(API), or if an interface could be developed. This was
achieved by developing prototypes on the basis of key
features (major requirements in form of use cases), with
the goal to identify opportunities for integrating the
software systems with each other (Figure 4). For each
software system, key features were defined, that had to be
realized by the prototype. The prototypes should show if
the features of the underlying software system could be
accessed through its interface.

Figure 4: Prototype development subprocess model

Based on the prototypes, the effort, cost and time for the
development of the whole EC system could be estimated.
This estimate was used to verify the "time-to-market"
aimed for by marketing, and to plan accompanying
measures such as advertising etc. In the case of the IPSI
electronic commerce portal, more resources were
necessary for the development of an interface to integrate
MS Outlook 2000 than for the development of the
communications subsystem based on Java libraries. The
effort required to integrate the partner database legacy
system was relatively low since the adaptor could be
implemented using XML (Haifi 2000). However, this is

not always the case. Depending on the type of legacy
system, integration may be more difficult. For example,
under some conditions the integration of an SAP R/2
system with an EC system can only be achieved through
the generation of batch input folders and could therefore
require more attention in terms of resource capacity
devoted to that integration task.

3.4 GUI Development
The graphical user interface for an EC system is
developed in two steps. First, a user interface prototype is
designed. This prototype is also used by marketing/sales
to support accompanying advertising measures. The
prototype development begins with writing a storybook
based on use cases. This storybook is then used to define
a style guide and, in a second step, to realize and
implement the user interface for the EC system. For the
IPSI electronic commerce portal, this was done for
multiple access channels (WWW, WAP).

Figure 5: User interface design subprocess model

In addition to the portal’s specific functionality in the
insurance B2E application domain, its content is a
significant element. Content comprises all the
information the EC portal provides, as well as its
presentation within the user interface. Content often has
multi-media characteristics, i.e. it comprises textual
information, moving and still pictures and audio
information. Consequently, a content manager
responsible for multi-media information plays an
important role in the software development process. This
is a new role that can consist of several other roles, such
as the media author who collects textual information and
reworks it for a consistent presentation; the media
designer responsible for the audio-visual design of the
user interface; and the media producer who researches
available media, creates images, graphics, animations,
audio and video sequences, and clarifies copyright issues.
Media editors are responsible for quality assurance in the
multi-media content part of the application.

In addition to the role of a content manager, with its many
tasks and responsibilities, the role of an ergonomics
advisor has to be taken on by a team member. The
ergonomics advisor’s task is to ensure that the user
interface of the EC portal meets ergonomic criteria, i.e.

• it is suited to the tasks the user has to accomplish

• it guides the user by being self-explanatory and gives
additional help on request

• it lets the user decide how to use the system without
forcing him or her to follow a predefined set of
procedures

• it signals and describes user errors and allows their
correction with little effort

• it can be adapted to the user’s level of experience

User manuals can be differentiated into tutorials and
references. For the creation of the user manuals, a style
guide is used that describes what the complete user
documentation should look like. The storybook already
used for the user interface prototype was also used to
create the tutorial. (Figure 5).

3.5 Integration and System Test
In the implementation phase, the system architecture built
during the design phase was implemented in the Java
programming language. In this phase, elementary parts of
the system architecture (the controllers, adaptors,
formatters and business objects mentioned in section 2)
were incrementally implemented, class tests were
performed and classes were combined to form
subsystems (or components). All implemented
subsystems subsequently went through a component test.
Based on the use cases, test data sets were created to test
the subsystems functionality.

In the integration phase, the tested components were then
integrated into the EC portal. The complete integrated
system was then subject to system and integration tests.
To do this, the test data sets used for the component test
were extended, and new sets were created. After a
successful system test, the EC portal was delivered to the
customer, together with the user tutorial in the system
delivery phase (Figure 6).

4 Conclusion
Several conclusions can be drawn from the IPSI
development process and are described in this section:

The development process for the IPSI electronic
commerce portal is characterized by the high effort
necessary to integrate the subsystems. This experience
can be transferred to the development of other EC
systems, because an EC system usually has to be
integrated into a pre-existing software and hardware
infrastructure. The integration effort comprises not only
the design and implementation of interfaces (APIs), but
also testing of those interfaces. The more complex the
subsystems are, the more effort is required for the
interface test since the necessary test drivers and stubs
have to be equally complex.

Every introduction of an EC system to the market should
happen within an adequate “time-to-market”.

Consequently, an early estimate of the feasibility,
required effort and duration of the development project
has to be made. This is a particularly difficult task in the
EC context, because many new technologies (such as new
Java libraries and XML) are used and not every developer
is skilled in these technologies. What makes estimates
even more complex is the fact that in some cases the
effort needed to implement a specific component depends
on implementation details (like the side effects of using
RMI). These details can only be clarified by developing
(vertical) prototypes. Only after implementing these
prototypes we were able to assess the feasibility of the
architecture and to calculate the effort and duration
needed for the implementation tasks.

Productive use of IPSI showed that architecture openness
is a crucial issue. Many further legacy systems had to be
added after the initial release, standard tools were
exchanged for individual customers. All these
modifications depend on a clear and modular architecture.
With hindsight, it would have been useful to develop IPSI
as a component-based system on the basis of a standard
component model like Enterprise Java Beans or DCOM.

As in every software system, features supporting the user
(e.g. a self-explanatory user interface and online help)
also should not be neglected in EC systems. It is
important that the user-support features are tailored to the
intended EC system target group. For example, in e-
government, with its very heterogeneous target group,
user-supporting features are mandatory. The same is true
for EC systems used in an intra- or extranet, such as the
EC portal for insurance agents. Consequently, the way the
user interface of an EC system is designed significantly
contributes to user acceptance of the system. This means
that the software development process must include the
creation of a user interface prototype that can form the
basis for discussions with ergonomics specialists and also
serve as a marketing tool.

All the activities mentioned above have been included in
the IPSI development process. Nevertheless, there are
some more aspects to be kept in mind when developing
EC systems, not included adequately in the IPSI
development process to date. For example, consideration
of performance issues is extremely important, especially
when using highly layered object-oriented architectures
for Web applications. Thus, performance modeling and
testing (Menascé, and Almeida 2000) should be a central
activity in any software development process for EC
systems. In general, quality-assuring activities of any
kind are often victims of the “time-to-market”
philosophy. Here, the goal must be to construct software
development processes that ensure a consistent high
quality of EC systems, despite the changed and dynamic
conditions, and take into account the shorter development
time for these systems.

Figure 6: Integration and system test subprocess model

5 References
BAKER, S. and GERAGHTY, R. (1998): Java for

Business Objects. In Developing Business Objects.
225-237. CARMICHEL, A. (ed). SIGS Cambridge
University Press.

BAYER, F., JUNGINGER, S. and KÜHN, H. (2000): A
Business Process-Oriented Methodology for
Developing E-Business Applications. In Proc. 7th
European Concurrent Engineering Conference. 123-
132. BAAKE, U., ZOBEL, R. and AL-AKAIDI, M.
(eds). SCS Publishing House.

BOOK, M., GRUHN, V. and SCHÖPE, L. (2000):
Realizing An Integrated Electronic Commerce Portal
System. In Proc. of the Americas Conf. on Information
Systems. 156-162. CHUNG, M. (ed). Association for
Information Systems.

CHESHER, M. AND KAURA, R. (1998): Electronic
Commerce and Business Communications. Springer,
Berlin, Heidelberg, New York.

COYLE, F. (2000): Legacy Integration – Changing
Perspectives. IEEE Software 17(2): 37-41.

DEITERS, W. and GRUHN, V. (1994): The Funsoft Net
Approach to Software Process Management. Int.
Journal of Software Engineering and Knowledge
Engineering 4(2): 229-256. World Scientific Publ.
Company.

GRUHN, V. and SCHÖPE, L. (2001): A Software
Process for an Integrated Electronic Commerce Portal
System. In Proc. 8th European Workshop on Software
Process Technology. 90-101. AMBRIOLA, V. (ed).
Springer, Berlin.

HAIRE, B., HENDERSON-SELLERS, B. and LOWE,
D. (2001): Supporting Web Development in the OPEN
process: Additional Tasks. In Proc. 12th COMPSAC
2001. 383-389. IEEE Computer Society.

HAIFI, L. (2000): XML and Industrial Standards for
Electronic Commerce. Knowledge and Information
Systems 2(4): 487-497. Springer, London.

HASSELBRING, W., KOSCHEL, A. and MESTER, A.
(2001): Basistechnologien für die Entwicklung von
Internet-Portalen. In Datenbanksysteme für Büro,
Technik und Wissenschaft. 517-526. HEUER, A.,
LEYMANN, F. and PRIEBE, D. (eds). Springer,
Berlin, Heidelberg, New York.

HARRISON, W., OSSHER, H. and TARR, P. (2000):
Software Engineering Tools and Environments. In
Proc. 22nd Int. Conf. on Software Engineering. 263-
277. FINKELSTEIN, A. (ed). ACM Press.

HOFFNER, Y., LUDWIG, H., GREFEN, P. and
ABERER, K. (2001): CrossFlow: Integration
Workflow Management and Electronic Commerce.
SIGecom Echanges, Newsletter of the ACM SIG on
Electronic Commerce 2(1): 1-10. ACM Press.

LAMOND, K. and EDELHEIT, J. (1999): Electronic
Commerce Back-Office Integration. BT Technology
Journal 17(3): 87-96. Kluwer Academic Press.

LAARTZ, J., SCHERDIN, A., CAFARELLI, D. and
HJARTAR, K. (2000): Evolve your architecture. CIO
Magazine, Issue September 15, 2000.

LEWANDOWSKI, S. (1998): Frameworks for
Computer-Based Client/Server Computing. ACM
Computing Surveys, 30(1): 3-27. ACM Press.

LINCKE, D. and ZIMMERMANN, H. (1999): Integrierte
Standardanwendungen für Electronic Commerce –
Anforderungen und Evaluationskriterien. In
Managementhandbuch Electronic Commerce. 197-210.
HERMANNS, A. and SAUTER, M. (eds). Verlag
Franz Vahlen, Munich.

MENASCÉ, D.A. and ALMEIDA, V.A.F. (2000):
Scaling for e-Business – Technologies, Models,
Performance, and Capacity Planning. Prentice Hall.

NIELSEN, J. (2000): Designing Web Usability: The
Practice of Simplicity. Riders Publishing, Indianapolis.

NOFFSINGER, W.B., NIEDBALKSI, R., BLANKS, M.
and EMMART, N. (1998): Legacy Object Modeling
speeds Software Integration. Communications of the
ACM 41(12): 80-89. ACM Press.

SHAW, M.J. (2000): Electronic Commerce: State of the
Art. In Handbook on Electronic Commerce, 3-24.
SHAW, M., BLANNING, R., STADER, T. and
WHINSTON, A. (eds). Springer, Berlin, Heidelberg,
New York.

	Introduction
	The IPSI Electronic Commerce Portal
	Process Description
	Requirements Analysis
	Subsystem Selection
	Prototype development
	GUI Development
	Integration and System Test

	Conclusion
	References

