
Software processes for the development of electronic commerce systemsq

Volker Gruhna,*, Lothar Schöpeb

aDortmund University, Baroper Str. 301, D-44227 Dortmund, Germany
bInformatik Centrum Dortmund e.V., Joseph-v.-Fraunhofer-Str. 20, D-44227 Dortmund, Germany

Abstract

The development of electronic commerce (EC) systems is subject to different conditions than that of conventional software systems. This

includes the introduction of new activities to the development process and the removal of others. An adapted process must cope with

important idiosyncrasies of EC system development: EC systems typically have a high degree of interaction, which makes factors like

ergonomics, didactics and psychology especially important in the development of user interfaces. Typically, they also have a high degree of

integration with existing software systems such as legacy or groupware systems. Integration techniques have to be selected systematically in

order not to endanger the whole software development process. This article describes the development of an EC system and it generalizes

salient features of the software process used. The result is a process model which can be used for other highly integrative EC system

development projects. The processes described are determined by short process lifecycles, by an orientation towards integration of legacy

systems and by a strict role-based cooperation approach. q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Electronic commerce system; Software process model; Software process

1. Introduction

In this paper, electronic commerce (EC) is defined as

conducting transactions of any kind by means of electronic

media, especially the Internet. The roles of suppliers and

customers in these transactions can be adopted by different

parties, such as consumers (C), administrations (A),

businesses (B) or even their employees (E) [20–22]. The

parties involved in EC transactions use information

technology (IT) systems to automate their transactions [2,

5]. The examples used in this paper are business-to-

employee (B2E) EC systems. The EC portal system

discussed in this article is an integration platform for

different software systems: conventional (i.e. non-EC)

software systems such as legacy and office systems as

well as other EC based systems such as shop systems.

In the same way that conventional application software

systems are developed according to conventional software

development processes, special software development

processes are necessary to delineate the development of

EC systems [3,7,9,11]. These software development pro-

cesses for EC systems differ from those for conventional

application software systems in the following aspects:

They include provisions for new or adapted activities and

roles performing them:

W System integration is very important in EC settings,

because often, many heterogeneous systems have to be

integrated and these do not necessarily have a long

lifetime. Therefore the add-on or replacement of

components should be planned beforehand.

W The need for attractive and user-friendly user inter-

faces is very pressing. One reason for this is that often,

users are of various kinds with differing backgrounds,

not known personally making it difficult to obtain

feedback. Roles for graphical design activities are

needed in order to provide these user interfaces.

W Content is an integral part of most EC systems and

important regarding quality, quantity and frequency of

change. Roles and activities for managing this content

are needed.

They must take into account that EC software develop-

ment is a very distributed process. That is, the roles

mentioned above are often adopted by different parties:

software companies develop software components, multi-

media companies develop graphical features for the inter-

face and specialized content providers supply the content.

0950-5849/02/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 1 09 -X

Information and Software Technology 44 (2002) 891–901

www.elsevier.com/locate/infsof

q This article is an extended version of the article presented at APAQS

2001 [31].
* Corresponding author.

E-mail addresses: volker.gruhn@uni-dortmund.de (V. Gruhn),

lothar.schoepe@icd.de (L. Schöpe).

http://www.elsevier.com/locate/infsof

These aspects are discussed in the following. In EC

system settings, many predefined building blocks, like shop

systems, content management systems etc. are often

developed by small software suppliers with special

expertise in their field. Companies generally do not want

to be dependent on these small suppliers. So, when

designing an EC system, one should have in mind that

some components might be replaced and others might be

added at a later point in time. Thus, focus should be put on

system integration activities during the software develop-

ment from an early stage on. This challenge clearly

indicates that paradigms known from component-based

systems and architectures [23] are well-suited for EC

systems as well. Components in the sense of component

models like Enterprise JavaBeans or DCOM are the

building blocks from which EC systems are built [25]. If

an EC system needs to be integrated into an existing

infrastructure, the requisite methods, concepts and software

tools for the integration must be available [18]. The

methods, concepts and software tools used, as well as the

software developers involved, depend on how the inte-

gration is undertaken. For example, security aspects (use of

firewalls, cryptography etc.) might have to be taken into

account. These security aspects then not only have to be

considered during implementation, but also during the

design of the EC system. Also, it must be decided if direct

sales processes for products or services should be electro-

nically supported by an EC system. If support for products is

required, the EC system has to be integrated with an open or

closed inventory control system of the merchant. Integration

with conventional domain-specific, highly individual appli-

cation software systems is also usually required when

supporting direct sales processes for services. These

individual application software systems, termed ‘legacy

systems’, are used by all kinds of businesses such as

insurance companies, governmental agencies, banks, power

utilities etc. [13].

While conventional application software systems might

win user acceptance mainly through their functionality and

can be positioned against market competitors in that way, a

special class of EC systems (e.g. shop systems) also have to

win user (i.e. customer) acceptance via the user interface.

The user interface not only presents content in a certain

layout, but also guides and supports the user. The tasks

concerning the selection of content and its presentation are

not included in most conventional software development

processes. The roles performing them are specialists for

software ergonomics, didactics, graphical design and

psychology.

Performance is a second factor influencing user accep-

tance of EC systems. This becomes more evident when

looking at the negative effects of an EC system with poor

performance: users tend to quit their visit to a site after

waiting for 8–15 s [17] for a response, resulting in loss of

revenue and image for the company associated with the site.

Therefore, characterization of customer behavior, workload

forecasting and performance modelling become very

prominent activities [24]. Two characteristics of EC

customer behavior aggravate workload characterization in

EC settings: peak-like request bursts and high-volume data

requests that are not typically found in conventional

software systems [16].

Another major factor in acceptance of many EC systems

(e.g. shop systems) is being up-to-date—not only regarding

the content, but equally important, content presentation. In

most conventional software application systems, data of

different types and structures is managed and processed in

different ways. The more data managed by the application

software system, the more up-to-date it is. In addition, for a

shop system to stay up-to-date, the presentation of its

content must be kept up-to-date. This means that even if the

data remains mostly unchanged, its presentation is subject to

change over time. In the productive/maintenance phase, the

functionality of a shop system may remain largely constant,

while the presentation of the content is modified and

adapted at certain time intervals by specialists for software

ergonomics, didactics, graphic design and psychology.

Extensive statistical testing permits the measurement of

customer acceptance levels with time. And from these

statistics, it can be deduced which parts of the presentation

should be changed.

The roles involved in the development of an EC

system are more specialized and more widely spread

between participating suppliers than is normally the

case with conventional software systems development.

Some of the roles and their activities have already been

mentioned: specialists for software ergonomics, didac-

tics, screen design and psychology, performance engin-

eers, content engineers and software developers with

expertise in a multitude of technologies such as

programming languages like Java, component models

and other frameworks such as Enterprise JavaBeans,

Servlets or Java Server Pages, or middleware at

different levels such as XML, SOAP and RMI. In

most cases, this variety of required skills is not found in

one single supplier such as a software company.

Collaboration between many suppliers with specialized

skills such as multimedia design companies, software

companies including freelancers as experts and content

providers is far more likely to be the case. A process

for the development of EC systems has to take this

distribution into account, by considering contract

settlement (legal and technical in terms of interface

contracts) and means for easing communication between

suppliers.

Depending on the course of action within the software

development process, the different roles use different

software tools, such as shop systems (Intershop, Openshop,

etc.), content management systems (Hyperwave, Firstspirit,

Pirobase, etc.) or software development/programming

environments (JBuilder, Together J, etc.).

As argued previously, when developing EC systems,

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901892

a special software development process is needed to

take into account these factors. This paper presents such

a process that has been defined during the development

of a B2E EC portal system: this portal system is

presented in Section 2 and demonstrates some of the

above-mentioned features of EC systems stimulating the

demand for adapted software development processes.

Section 3 describes the actual process that dealt with

these features and resulted in the portal system. Section

4 validates the proposed process model and relates it to

other work in the software process field. Finally,

Section 5 summarizes the main aspects and draws

conclusions from the work on processes suited to

support the development of EC systems.

2. The IPSI electronic commerce portal

An EC portal for insurances was designed and

implemented as part of a software engineering project [4].

This portal called Internet portal system for insurances

(IPSI) is intended to provide support for insurance agents

with their daily work. The main goal of the portal is to

support B2E processes [15]. Thus, the communication

between management and employees (in this case between

an insurance company and its agents), but also between

employees themselves is supported by providing infor-

mation about the product portfolio, tariffs and customer

contacts via the EC portal and its subsystems. This portal

system demonstrates some of the idiosyncrasies of EC

systems that generate the demand for adapted software

development processes. The process used for the develop-

ment of IPSI is discussed in Section 3.

During the requirements analysis phase of the project, it

was recognized that the EC portal serves as an integration

platform for different heterogeneous subsystems [8]. Based

on an n-tier-architecture, the user interface and data

repository1 are separated from the functional business

logic [12] that resides in multiple application components

(called subsystems). This highly integrative character of

IPSI had a substantial impact onto the software process

chosen (compare Section 3). At the functional business

logic level, the following subsystems of an EC portal were

identified, which show the need for focusing on integrating

many different systems:

Office system: The office system manages any agent’s

customer contact addresses and scheduled appointments.

For addresses, a distinction between remote and local data is

made. While remote data is managed by the partner

management system of the insurance company, local data

is managed by an office system on the agent’s computer, to

satisfy his or her privacy requirements.

Content management system: Information of any kind is

supplied by the content management system. Each insur-

ance company employee (e.g. management, back office

employees or agents) can provide information for all other

participants. Based on individual access rights, employees

can retrieve information (e.g. new product portfolio,

handbooks, marketing materials, comments on legal

decisions in the context of insurances etc.) from or store

information in the content management system for every

other employee. The content management system organizes

this information using different views and access rights.

Procurement system: The procurement system offers

consumer goods (e.g. computer equipment, books or writing

material) and services (e.g. training courses). Every

Fig. 1. System architecture.

1 The management of data (e.g. personal addresses) is taken over by a

traditional host system like IBM MVS (for remote data) and additionally by

a local office system like Lotus Notes or Microsoft Outlook (for local data).

Access to remote data is provided by the electronic commerce portal via an

XML interface. The synchronization of remote and local data is also

guaranteed by the electronic commerce portal.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901 893

insurance agent can order consumer goods for his daily

work. Management can monitor the orders and control the

costs generated by their agents.

Communications system: The communications system

represents the interface to telecommunications media

(mobile phones, fax and e-mail). The communications

system is able to send documents, notifications or reminders

by e-mail, short message service (SMS) or fax. Notifications

and reminders are sent at any user-defined point of time set

by the office system.

Portal administration system: The portal administration

system serves as the administration center and therefore

provides functions to add, update or delete portal user data

and other administrative features. The administration

system allows for a single-sign-on, i.e. EC portal users do

not need to authorize themselves at each subsystem of the

portal separately. The second purpose of the portal

administration system is the analysis and presentation of

logging information provided by the subsystems.

Search system: The search system allows the user to

search for information in the entire portal, based either on

full text search or predefined keywords. The result of a

search request can include appointments, customer

addresses, documents from the content management system,

goods ordered or a combination of these elements.

Legacy system: A legacy system is any external system

already existing at the provider’s (in this example the

insurance company) site, which has to be connected to the

EC portal. Legacy systems are often implemented as host

applications such as a partner management system storing

contract data of people insured in the case of IPSI.

These requirements led to the development of the system

architecture depicted in Fig. 1.

Office, content management, procurement, legacy and

communications are all external systems. To avoid building

these from scratch, it was decided to integrate existing

solutions into the EC portal.

Book et al. [4] describe the architecture of the portal

system in detail. Only a short overview is given here, with

special focus on the previously mentioned requirements of

EC systems.

The user interacts with the EC portal via a Web browser

(system architecture also allows other user agents such as

mobile phones).

This has important implications for the control flow

within the system: in traditional software systems, the

dialog can be controlled by the system to a large extent. For

example, the system can open a modal dialog box at any

time, forcing the user to take some specific action before he

can do anything else [17]. On the web, however, all actions

are initiated by the user. The server cannot push information

to the browser that the user did not request.2

Consequently, the external systems (office, content

management etc.) of the EC portal remain passive and act

only on user requests passed to them via the path depicted in

Fig. 2.

Every user action like clicking on a link or submitting a

form generates an HTTP request which is received by a

central dispatcher. The dispatcher parses the HTTP request

string, builds a request object from its contents and passes it

to the controller that is responsible for handling the

requested task. The search controller and admin controller

implement the functionality of the search and portal

administration systems mentioned earlier; all other trans-

actions involving the external systems are handled by the

workflow controller.

The actual ‘work’ of the system is done by the

Fig. 2. Communication within the electronic commerce portal.

2 This is true for a user interface built from plain HTML pages. Of course,

one might conceive a client-side Java applet displaying information pushed

to it by the server. However, this would require a Java-capable user agent,

ruling out most of the currently available mobile agents like WAP phones,

organizers etc. Plain HTML, on the other hand, makes the least assumptions

about the target platform, and the subsystems producing it can easily be

adapted to generate similar formats like Wireless Markup Language

(WML).

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901894

subsystems: the office subsystem stores the agent’s contacts,

appointments, tasks etc. the content management system

manages all the published data, the legacy systems handles

contract data and so on. To connect the subsystems to the

rest of the application while hiding the specifics of any

subsystem, we used adaptors acting as a façade of a

subsystem. If a subsystem is replaced or a new subsystem is

added, only the adaptors have to be replaced.

To be able to add new functionality (which can be the

case even if one is not changing subsystems), a highly

configurable dispatcher–controller mechanism using the

Java Reflection API was utilized. In this setting, the

dispatcher is responsible for locating a controller able to

handle the user’s request. A controller implements the

workflow necessary to fulfil one request [10], especially by

interacting with the subsystems’ adaptor interfaces. Con-

trollers and subsystem adaptors communicate by exchan-

ging business objects [1] i.e. entities that are central to the

EC portal’s workflow. The following business objects are

therefore known to all controllers and subsystems:

† User

† Contact

† Appointment

† Task

† Message

† Shop item

† Order

† Order history

† Search request

† Search result

To schedule an appointment, for example, the respective

workflow controller creates an appointment object from

data received by the dispatcher and passes it to a method of

the office subsystem (or to be precise, the subsystem’s

adaptor) that adds the appointment to the user’s calendar. If

the user has chosen to be reminded of the appointment by e-

mail in time, the workflow controller additionally creates a

message object, connects a copy of the appointment object

to it and passes it to the communications system which will

queue it for e-mail delivery at the time requested by the user.

To separate the business logic contained in the

controllers and maintained by software developers from

the presentation logic maintained by user interface special-

ists, we employed a controller–formatter mechanism. The

source of the user’s request (e.g. a Web browser) determines

the output medium and tells the dispatcher which formatter

(e.g. a WML- vs. a HTML-formatter) to call after the

controller finished its task. When changing the graphical

user interface or adding a new output medium, only the

formatters need to be modified by the design specialist,

leaving the business logic completely unchanged.

To cope with performance considerations and other

technical system requirements, most external subsystems

and the Web server run on separate computers. This

distributed architecture requires a middleware like RMI to

coordinate the invocation of methods and passing of objects

among the different components.

3. Process description

In this section we describe the software process chosen

for the development of IPSI. This process is considered as a

Fig. 3. Electronic commerce portal development process model.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901 895

good candidate for other highly integrative EC systems as

well (compare Section 4).

In general, the software development process for the

development of a certain IT system is defined by a process

model. A process model presents all the activities (in a

certain order), the required tools and the created intermedi-

ate or final products necessary to achieve the process’s

purpose. A process model is usually tailored to a certain

development project. A process, on the other hand, is the

execution of a process model (in the object-oriented way of

thinking, a process is an instance of a process model), i.e.

the activities that are delineated in the process model are

actually performed.

Although a formal specification of a software develop-

ment process in the form of a process model simplifies its

support by workflow systems, it is not mandatory for

achieving a positive effect in software development. In

order to reach consensus about the software development

process among all those involved, an informal though

structured and comprehensive description can be sufficient.

A company’s knowledge of best practices was and is often

described in internal documents and development guide-

lines. For example, ISO 9000 (part 1–3) defines only the

contents of the description of best practices and develop-

ment guidelines, but not their notation. However, informal

specifications relying on natural language bear the danger of

misinterpretation because they usually have enormous

volume, and some concepts, dependencies and prerequisites

cannot always be formulated precisely.

One trend in the software process community is to

promote processes which focus on components and on

building systems from components. Examples are Catalysis

[26] and SELECT [27]. Both describe in detail how

components could be specified and how the integration of

components into systems could look like. Some of the

elements used in the process for developing IPSI are related

to these process models (compare Section 4).

The process model for the development of the IPSI EC

portal is presented schematically in Fig. 3, using the

FUNSOFT net notation [6]. In order to reduce the

complexity of presentation and increase the number of

levels of abstraction, this notation allows distinction

between elementary tasks (e.g. write story book, perform

test data creation) and subprocess models (e.g. requirements

analysis, subsystem evaluation, prototype development),

which can again contain elementary tasks and subprocess

models.

The object-oriented design using UML, prototype

development, implementation of adaptors to integrate

software systems as subsystems of the EC portal and the

use of a middleware (CORBA/RMI) for communication

within the portal are all represented in this software

development process. The development process also

shows that the use cases described in UML are an important

prerequisite for several subprocess models such as the user

interface specification and development.

In the following, the development process of the IPSI EC

portal is described in reduced form with reference to the

subprocess models, but not their internal details. The

subprocess models for system design and implementation

are not described, because in contrast to other activities,

they did not show as many EC-specific deviations from the

design and implementation activities of conventional

development processes.

3.1. Requirements analysis

Requirements analysis starts with a competition analysis,

subsequent proposal and contract evaluation, and project

initialization. After this, the functional and non-functional

requirements for the EC software system are identified.

For the development of the EC portal for insurance

agents, a competition analysis should determine if other

software companies already offered a similar portal and

which target groups those companies aimed at. Afterwards,

the product idea was presented to several insurance

companies, and one insurance company was won as a

partner and potential client. During the proposal and

contract evaluation, the feasibility of the client’s require-

ments was clarified. The goal was a contract basis that was

stable in every regard (content-wise, legal, mercantile) and

the creation of a basis on which a software system could be

developed that met the client’s functional and technical

requirements.

High product functionality can be used to secure market

advantage over competitor products. However, the realiz-

ation of high functionality requires a certain effort, mirrored

in the amount of time it takes to realize an EC system. Thus,

advantage can also be gained by securing early market

appearance of the EC system (‘first mover advantage’). This

means that, according to the ‘time-to-market’ concept, EC

software systems in particular need to be quickly developed

and introduced to the market. The identification of

requirements and the assignment of priorities to those

requirements with attention to their impact on development

time is a highly significant task when developing EC

systems. To tackle the time-to-market problem, the bifocal

approach proposed by Laartz et al. [14] can be used. This

approach suggests building an EC system in two stages:

first, requirements that are considered most critical regard-

ing user acceptance (e.g. those requirements already

covered by competitors identified during the competition

analysis) are implemented in a first version of a system as

quickly as possible, ignoring attributes such as reusability,

scalability or flexibility. At the same time or shortly after the

development of the system’s first version is started, an

architecture is designed which satisfies all functional and

also non-functional requirements for a long-term system.

The second system replaces the first once it is finished.

The initial list of requirements resulting from the

competition analysis is the starting point for the creation

of a requirements catalog for the entire EC portal to be

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901896

developed. This requirements catalog is checked for

contradictions, redundancy and completeness in several

ways; for example, by interviewing users and providers.

Users are people or groups of people who will actually use

the portal, while providers are persons or groups of persons

who will run the portal in order to provide its services to the

users (in the context of this paper, users are insurance agents

and the provider is the insurance company). Both users and

providers have different, potentially competing

requirements.

During the interviews for the IPSI portal, it became clear

that some insurance companies already used supporting

systems for their agents. These systems were examined in

order to identify further requirements. After consolidating

all requirements from the different sources, the requirements

catalog was corrected and extended as required, and

requirements re-checked for errors.

3.2. Subsystem evaluation

In most cases, EC systems are not developed indepen-

dently of an existing hardware and software infrastructure.

Usually, the EC systems have to be integrated into the

existing infrastructure by sharing data with its systems.

However, the sharing of data between the EC system and

existing software systems may not always be sufficient—

sometimes, the use of existing functionality is necessary.

Thus, the IPSI EC portal exchanges data with its subsystems

as well as with the database systems of the insurance

company (e.g. UDS for BS2000). In this way, the portal can

supply the insurance agent with data of people insured and

their contracts. Furthermore, the portal needs the function-

ality of a complex tariff computation module, e.g. for a life

insurance.

For the IPSI EC portal, it was decided to integrate

existing software systems for most subsystems. This

decision was followed by market analysis to determine

which existing systems should be used. The analysis also

took into account non-functional criteria such as price,

availability, support, platform, and possibilities of integrat-

ing the system (discussed in Section 3.3), and led to the

selection of Microsoft Outlook 2000, Pirobase 4.0, Smart-

Store 2.0 and several freeware communication applications

for the subsystems office, content management, procure-

ment and communications, respectively (Fig. 4).

3.3. Prototype development

In addition, it had to be determined if the software

systems selected provided a programming interface (API),

Fig. 4. Subsystems of the electronic commerce portal.

Fig. 5. Prototype development subprocess model.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901 897

or if an interface could be developed. This was achieved by

developing prototypes on the basis of key features (major

requirements in form of use cases), with the goal to identify

opportunities for integrating the software systems with each

other (Fig. 5). For each software system, key features were

defined, that had to be realized by the prototype. The

prototypes should show if the features of the underlying

software system could be accessed through its interface.

Based on the prototypes, the effort, cost and time for the

development of the whole EC system could be estimated.

This estimate was used to verify the ‘time-to-market’ aimed

for by marketing, and to plan accompanying measures such

as advertising etc. In the case of the IPSI EC portal, more

resources were necessary for the development of an

interface to integrate MS Outlook 2000 than for the

development of the communications subsystem based on

Java libraries. The effort required to integrate the partner

database legacy system was relatively low since the adaptor

could be implemented using XML. However, this is not

always the case. Depending on the type of legacy system,

integration may be more difficult. For example, under

some conditions the integration of an SAP R/2 system

with an EC system can only be achieved through the

generation of batch input folders and could therefore

require more attention in terms of resource capacity

devoted to that integration task.

3.4. GUI development

The graphical user interface for an EC system is

developed in two steps. First, a user interface prototype is

designed. This prototype is also used by marketing/sales to

support accompanying advertising measures. The prototype

development begins with writing a storybook based on use

cases. This storybook is then used to define a style guide

and, in a second step, to realize and implement the user

interface for the EC system. For the IPSI EC portal, this was

done for multiple access channels (WWW, WAP).

In addition to the portal’s specific functionality in the

insurance B2E application domain, its content is a significant

Fig. 7. User interface design subprocess model.

Fig. 6. Integration of legacy system.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901898

element. Content comprises all the information the EC portal

provides, as well as its presentation within the user interface.

Content often has multimedia characteristics, i.e. it comprises

textual information, moving and still pictures and audio

information. Consequently, a content manager responsible for

multimedia information plays an important role in the

software development process. This is a new role that can

consist of several other roles, such as the media author who

collects textual information and reworks it for a consistent

presentation; the media designer responsible for the audio-

visual design of the user interface; and the media producer who

researches available media, creates images, graphics, anima-

tions, audio and video sequences, and clarifies copyright

issues. Media editors are responsible for quality assurance in

the multimedia content part of the application.

In addition to the role of a content manager, with its

many tasks and responsibilities, the role of an ergonomics

advisor has to be taken on by a team member. The

ergonomics advisor’s task is to ensure that the user interface

of the EC portal meets ergonomic criteria, i.e.

† it is suited to the tasks the user has to accomplish

† it guides the user by being self-explanatory and gives

additional help on request

† it lets the user decide how to use the system without

forcing him or her to follow a predefined set of

procedures

† it signals and describes user errors and allows their

correction with little effort

† it can be adapted to the user’s level of experience

User manuals can be differentiated into tutorials and

references. For the creation of the user manuals, a style

guide is used that describes what the complete user

documentation should look like. The storybook already

used for the user interface prototype was also used to create

the tutorial (Fig. 7).

3.5. Integration and system test

In the implementation phase, the system architecture

built during the design phase was implemented in Java. In

this phase, elementary parts of the system architecture (the

controllers, adaptors, formatters and business objects

mentioned in Section 2) were incrementally implemented,

class tests were performed and classes were combined to

form subsystems (or components).

As an example, let’s consider a search request handled by

the legacy system (Fig. 6):

The large box in the middle is a view inside the legacy

subsystem that we know from previous figures. The smaller

boxes inside represent classes. Because only the legacy

boundary class is connected to the workflow controller via the

middleware, in our example the controller does not pass the

search request object directly to the query encoder. Instead,

the search request is passed to the legacy boundary class which

then passes it to the query encoder. This class is a part of the

adaptor that, as discussed earlier, hides the native interface of

the external system from the portal subsystem: in the case of

the legacy system, queries and results of the insurance

company’s partner database are XML-encoded [19] for

maximum platform and transport independence. The XML-

encoded search query is run against the insurance company’s

database, and the encoded result is returned to the legacy

subsystem where the result decoder (another part of the

adaptor) creates a search result object and passes it to the

legacy boundary class, which returns it to the workflow

controller.

All implemented subsystems subsequently went through

a component test. Based on the use cases, test data sets were

created to test the subsystems functionality. This test is a

combined black box and white box test as described in Ref.

[28]. While white box techniques are applied to all

components for which the source code is available, black

box techniques have to be applied to all components

purchased from vendors, since these usually do not provide

access to their source codes.

In the integration phase, the tested components were then

integrated into the EC portal. The complete integrated system

was then subject to system and integration tests. To do this, the

test data sets used for the component test were extended, and

new sets were created. After a successful system test, the EC

portal was delivered to the customer, together with the user

tutorial in the system delivery phase (Fig. 8).

Fig. 8. Integration and system test subprocess model.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901 899

4. Evaluation of the process applied

The process chosen for the development of IPSI provides

some features which are closely related to features of EC

systems. It is influenced by the software process work as

described in Refs. [29,30]. The most important features of

EC systems reflected by the chosen software process are:

1. The development process for the IPSI EC portal is

characterized by the high effort necessary to integrate the

subsystems. This experience can be transferred to the

development of other EC systems, because an EC system

usually has to be integrated into a pre-existing software

and hardware infrastructure. The integration effort

comprises not only the design and implementation of

interfaces (APIs), but also testing of those interfaces. The

more complex the subsystems are, the more effort is

required for the interface test since the necessary test

drivers and stubs have to be equally complex.

2. It is rather difficult to assess the feasibility of developing

an EC system, because new, unproven technologies have

usually to be used. What makes estimates even more

complex is the fact that in some cases the effort needed to

implement a specific component depends on implemen-

tation details (like the side effects of using RMI). These

details can only be clarified by developing (vertical)

prototypes. Only after implementing these prototypes we

were able to assess the feasibility of the architecture and

to calculate the effort and duration needed for the

implementation tasks.

3. Usability engineering is a crucial tasks. In EC systems

users are a heterogeneous and usually not personally

known set of people. To check whether are not

navigation details and site structure suit them well is

difficult and, in general, demands for usability engineer-

ing methods.

4. Testing urgently demands the integration of different

types of testing techniques. This relates to the integration

of black box and white box techniques as well as the

combined use of component and system tests.

As mentioned in Refs. [7,10,30] these challenges are

typical for EC system. Even though some of these

challenges are properly addressed by traditional software

process models, the process model applied to the develop-

ment of IPSI concentrates on these challenges and therefore

provides a lean solution to the problem of developing EC

system.

5. Conclusion

Software processes for EC system are different from

traditional software processes (as, for example, used in the

development of information systems). Even though not a

single of the identified challenges for the development of

EC systems is completely new, process models which focus

on EC systems (and which therefore are a natural choice for

the development of such systems) are not available. Our

approach was to start with a real problem (the development

of IPSI), to model the process as it was carried out and to

generalize the process in the process model discussed in

Section 3.

The result is a rather lean software process model which

covers most aspects of EC systems and which is flexible

enough to be easily extended, if needed. All the activities

mentioned in Section 3 have been included in the IPSI

development process. Nevertheless, there are some more

aspects to be kept in mind when developing EC systems, not

included adequately in the IPSI development process to

date. For example, consideration of performance issues is

extremely important, especially when using highly layered

object-oriented architectures for Web applications. Thus,

performance modeling and testing [16,24] should be a

central activity in any software development process for EC

systems. In general, quality-assuring activities of any kind

are often victims of the ‘time-to-market’ philosophy. Here,

the goal must be to construct software development

processes that ensure a consistent high quality of EC

systems, despite the changed and dynamic conditions, and

take into account the shorter development time for these

systems.

Our future work will be devoted to applying the proposed

software process model to other types of EC systems (e.g. to

a business-to-consumer system) and to integrated subpro-

cesses which focus on activities like performance modeling

and after-release monitoring which have not been appro-

priately considered yet.

References

[1] S. Baker, R. Geraghty, Java for business objects, in: A. Carmichel

(Ed.), Developing Business Objects, SIGS, Cambridge University

Press, Cambridge, 1998, pp. 225–237.

[2] N.R. Adam, Y. Yesha, Electronic commerce: an overview, in: N.R.

Adam, Y. Yesha (Eds.), Electronic Commerce, LNCS 1028, Springer,

Berlin, 1995, pp. 4–12.

[3] F. Bayer, S. Junginger, H. Kühn, A business process-oriented

methodology for developing e-business applications, in: U. Baake,

R. Zobel, M. Al-Akaidi (Eds.), Proceedings of the Seventh European

Concurrent Engineering Conference, SCS Publishing House, 2000,

pp. 123–132.

[4] M. Book, V. Gruhn, L. Schöpe, Realizing an integrated electronic

commerce portal system, in: M. Chung (Ed.), Proceedings of the

Americas Conference on Information Systems AMCIS 2000,

Association for Information Systems, 2000, pp. 156–162.

[5] M. Chesher, R. Kaura, Electronic Commerce and Business Com-

munications, Springer, Berlin, 1998.

[6] W. Deiters, V. Gruhn, The Funsoft net approach to software process

management, International of Journal of Software Engineering and

Knowledge Engineering 4 (2) (1994) 229–256.

[7] B. Haire, B. Henderson-Sellers, D. Lowe, Supporting Web develop-

ment in the OPEN process: additional tasks, Proceedings of the 12th

COMPSAC (2001) 383–389.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901900

[8] W. Hasselbring, A. Koschel, A. Mester, in: A. Heuer, F. Leymann, D.

Priebe (Eds.), Basistechnologien für die Entwicklung von Internet-

Portalen, Datenbanksysteme für Büro, Technik und Wissenschaft

(BTW), 2001, pp. 517–526.

[9] W. Harrison, H. Ossher, P. Tarr, Software engineering tools and

environments, in: A. Finkelstein (Ed.), Proceedings of the 22nd

International Conference on Software Engineering, 2000, pp.

263–277.

[10] Y. Hoffner, H. Ludwig, P. Grefen, K. Aberer, Crossflow: integration

workflow management and electronic commerce, SIGecom

Exchanges 1 (2) (2001) 1–10. ACM Press.

[11] V. Gruhn, L. Schöpe, A software process for an integrated electronic

commerce portal, in: V. Ambriola (Ed.), Proceedings of the Eighth

EWSPT, Springer, Berlin, 2001, pp. 90–101.

[12] S. Lewandowski, Frameworks for computer-based client/server

computing, ACM Computing Surveys 30 (1) (1998) 3–27. ACM

Press.

[13] K. Lamond, J. Edelheit, Electronic commerce back-office integration,

BT Technology Journal 17 (3) (1999) 87–96. Kluwer Academic

Press.

[14] J. Laartz, A. Scherdin, D. Carfarell, K. Hjartar, Evolve your

architecture, CIO Magazine 15 (September) (2000).

[15] D. Lincke, H. Zimmermann, Integrierte standardanwendungen für

electronic commerce-anforderungen und evaluationskriterien, in: A.

Hermanns, M. Sauter (Eds.), Managementhandbuch Electronic

Commerce, Verlag Franz Vahlen München, Berlin, 1999, pp.

197–210.

[16] D.A. Menasce, V. Almeida, Scaling for e-Business, Models,

Performance, and Capacity Planning, Prentice Hall, Englewood

Cliffs, NJ, 2000.

[17] J. Nielsen, Designing Web Usability: The Practice of Simplicity,

Riders Publishers, 2000.

[18] W. Noffsinger, R. Niedbalski, M. Blanks, N. Emmart, Legacy object

modeling speeds software integration, CACM 41 (12) (1998) 80–89.

ACM Press.

[19] L. Haifi, XML and industrial standards for electronic commerce,

Knowledge and Information Systems 2 (4) (2000) 487–497. Springer

Verlag, London.

[20] M.J. Shaw, Electronic commerce: state of the art, in: M. Shaw, R.

Blanning, T. Stader, A. Whinston (Eds.), Handbook on Electronic

Commerce, Springer, Berlin, 2000, pp. 3–24.

[21] V. Zwass, Electronic commerce: structures and issues, International

Journal of Electronic Commerce 1 (1) (1996) 3–23.

[22] V. Zwass, Structure and macro-level impacts of electronic commerce:

from technological infrastructure to electronic marketplaces, in: K.E.

Kendall (Ed.), Emerging Information Technology, Sage Publishers,

Beverly Hills, CA, 1999, pp. 517–526.

[23] A.W. Brown, K.C. Wallnau, The current state of CBSE, IEEE

Software 9/10 (1998).

[24] D. Menasce, V. Almeida, Capacity Planning for Web Performance—

Metrics, Models and Methods, Prentice Hall, Englewood Cliffs, NJ,

1998.

[25] C. Szyperski, Component Software—Beyond Object-Oriented Pro-

gramming, Addison-Wesley, Reading, MA, 1998.

[26] D. D’Souza, A. Wills, Objects, Components, and Frameworks with

UML—The Catalysis Approach, Addison-Wesley, Reading, MA,

1998.

[27] P. Allen, S. Frost, Component Based Development for Enterprise

Systems, Cambridge University Press, Cambridge, 1998.

[28] S. Beydeda, V. Gruhn, A graphical representation of classes for

integrated black- and white-box testing, Proceedings of the Inter-

national Conference on Software Maintenance 2001 (2001) 706–715.

[29] I. Alloui, S. Cimpan, F. Oquendo, Monitoring software process

interactions: a logic-based approach, Proceedings of the Eighth

European Software Process Workshop (2001) 39–46. LNCS 2077,

Springer.

[30] G. Cignoni, Reporting about the Mod software process, Proceedings

of the Eighth European Software Process Workshop (2001) 242–245.

LNCS 2077, Springer.

[31] M. Book, V. Gruhn, L. Schöpe, A specific software development

process for an electronic commerce portal, in: Y.T. Yu, T.Y. Chen

(Eds.), Proceedings of the Second Asia-Pacific Conference on Quality

Software, 2001, pp. 406–414.

V. Gruhn, L. Schöpe / Information and Software Technology 44 (2002) 891–901 901

	Software processes for the development of electronic commerce systems&?show [super]☆[/super];
	Introduction
	The IPSI electronic commerce portal
	Process description
	Requirements analysis
	Subsystem evaluation
	Prototype development
	GUI development
	Integration and system test

	Evaluation of the process applied
	Conclusion
	References

