
V. Ambriola (Ed.): EWSPT 2001, LNCS 2077, pp. 90–101, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Software Process for an
Integrated Electronic Commerce Portal System

Volker Gruhn1 and Lothar Schöpe2

1 Universität Dortmund, Fachbereich Informatik, Lehrstuhl Software-Technologie
Baroper Str. 301,

D-44227 Dortmund, Germany
volker.gruhn@uni-dortmund.de

2 Informatik Centrum Dortmund e.V., Abt. Software-Technik
Joseph-v.-Fraunhofer-Str. 20,
D-44227 Dortmund, Germany

schoepe@icd.de

Abstract. In this paper we discuss that software processes for the development
of electronic commerce systems are different from software processes for other
kinds of information systems. We underpin this assumption by discussing an ex-
ample software process and software architecture. This example is driven by
real-world requirements. It is the development of a portal solution which is to be
used by sales staff of an insurance company.

1 Introduction

Conventional business transactions – i.e. transactions not supported by information
technology (IT) – are conducted nowadays by media like paper, telephone or fax
[27],[28]. IT-supported business transactions use media like electronic mail, EDI,
WWW and other Internet services [6],[7]. On an abstract level, partners in business
transactions – either electronic or conventional – are supplier and customer. In special
businesses, however, they can be called supplier and consumer, addressee and pro-
vider, or producer and supplier but also management and employee.

These roles – supplier and customer – can be taken by companies, administrations
or private persons. If the role of the supplier as well as the role of the customer is
taken by a company, the business transaction is called business-to-business (B2B). If
the role of the customer is taken by a private person, the business transaction is called
business-to-consumer (B2C). Analogously, the roles can be taken by an administra-
tion. In that case, the business transactions are called administration-to-consumer
(A2C), administration-to-administration (A2A) or business-to-administration (B2A).
Business transactions within a company – between management and employees, with-
out external partners – are called business-to-employee (B2E). From a supplier’s point
of view, electronic commerce includes marketing, sales, distribution and after-sales
support of products or services [21]. Electronic commerce primarily supports busi

A Software Process for an Integrated Electronic Commerce Portal System 91

ness-to-consumer (B2C) or administration-to-consumer (A2C) business transactions.
Electronic business, on the contrary, does not involve private customers but supports
electronic business transactions between companies, administrations or between man-
agement and employees.

In electronic commerce as well as electronic business, suppliers and customers
communicate electronically by means of a data communications network [1]. The
Internet with its protocols (TCP/IP, FTP, NNTP, SMTP, HTTP, etc.) and services
(Usenet, e-mail, WWW, etc.) represents such a data communications network.
The business transactions conducted between two partners in electronic commerce or
electronic business are supported entirely or in part by different software systems.
Each partner of the electronic business transaction uses individual and specific, simple
or complex software systems to support his own business transactions. These systems
do not only support the external business transactions with other partners, but often
also the internal business transactions (B2E). Electronic commerce systems and elec-
tronic business systems may integrate the different software systems of the different
partners of electronic commerce or electronic business transactions in a rather tight or
more loose way. In this sense, an electronic commerce portal is an integration plat-
form for different software systems like legacy, web, Internet or office systems. This
structure of a typical electronic commerce system illustrates that software processes
for this kind of systems differ from software processes for more traditional informa-
tion systems. Key differences are:
� System integration is even more important than for traditional information systems.

Systems to be integrated do not necessarily have a long lifetime. It should be
planned that they are replaced after a while. This is true in the area of electronic
commerce systems, because many predefined building blocks, like shop systems,
content management systems, etc., are developed by small software companies.
Users generally do not want to be dependent on these small suppliers.

� Users of the system are not known personally, feedback is more difficult to get.
� Besides of traditional software development skills, skills about graphical design are

needed in order to provide attractive user interfaces.
Software processes take place in a more distributed way. While software components
are developed by software houses, graphical features for the interface are developed
by multimedia companies or marketing departments.

2 Architecture of the IPSI System

During a software engineering project an electronic commerce portal for insurances
has been designed and realized. This portal – called Internet Portal System for Insur-
ances (IPSI) – will support insurance agents with their daily work. The main goal of
the portal is to support business-to-employee (B2E) processes. Thus, the communica-
tion between management and employees (e.g. insurance agents of an insurance com-
pany), but also between different employees, is supported by providing information

92 V. Gruhn and L. Schöpe

about the product portfolio, tariffs, customers and contacts by the electronic commerce
portal and its subsystems.

During the information analysis of the software engineering project, it was recog-
nized that the electronic commerce portal serves as an integration platform for differ-
ent heterogeneous subsystems. Based on a 3-tier-architecture, the user interface and
data repository are separated from the functional application logic [15]. On the level of
the functional application logic, the following subsystems of an electronic commerce
portal have been identified:
Office System:1 The office system manages contact addresses and scheduled ap-
pointments. For addresses, remote data and local data are distinguished: While remote
data is managed by the partner management system of the insurance company, local
data is managed by an office system on the user’s computer in order to satisfy his
privacy requirements.
Content Management System: Information of any kind is supplied by the content
management system. Each employee of a company (e.g. management, back office
employees or agents of the insurance company) can provide information for all others.
Governed by individual access rights, every employee can get information from or put
information into the content management system for every other employee (e.g. new
product portfolio, handbooks, marketing materials, comments to the law, decisions in
the context of insurances, etc.). The content management system will organize this
information using different views and access rights.
Procurement System: The procurement system offers consumer goods (e.g. laser
printers, toner, pencils, etc.) and services (e.g. courses, trainings, seminars, etc.).
Every insurance agent can order consumer goods for his daily work. The management
can monitor the orders and control the costs caused by the insurance agents.
Communications system: The communications system represents the interface to
telecommunications media like mobile phones, fax and e-mail. The communications
system is able to send documents, notifications or reminders by e-mail, Short Message
Service (SMS) or fax. Notifications and reminders are sent at a pre-defined time set by
the office system.
Portal Administration System: The portal administration system serves as the single
point of login, i.e. the user of the electronic commerce portal does not need to author-
ize himself at each subsystem of the portal. The second purpose of the portal admini-
stration system is the analyzation and presentation of the log files of the subsystems.
Search System: The search system allows the user to search for information in the
entire electronic commerce portal, based either on full text scan retrieval or predefined
keywords. The results of a search request can be appointments, addresses of custom-
ers, information from the content management system, ordered goods or a combina-
tion of these elements.

1 The management of addresses is realized by a traditional host system like IBM MVS (for

remote data) and additionally by a local office system like Lotus Organizer or Microsoft
Outlook (for local data). Access to the remote data is provided by the electronic commerce
portal via an XML interface. The synchronization of remote and local data is also guaranteed
by the electronic commerce portal.

A Software Process for an Integrated Electronic Commerce Portal System 93

Legacy System2: A legacy system is an external system not included in, but connected
to the electronic commerce portal. Legacy systems are realized as host applications
[8].

The portal user interface consists of web pages written in Hypertext Markup Lan-
guage (HTML). For data management, a relational database management system is
used if the subsystems do not have their own repository. Now, let’s take a closer look
at the system architecture (Figure 1).

Fig. 1. System Architecture

Office, content management, procurement, legacy and communications are all exter-
nal systems. To avoid building these from scratch, it was decided to integrate existing
solutions into the electronic commerce portal.

Since the interfaces used to access the external systems are very different, each one
is connected to the central middleware „backbone“ via an individual adaptor. Each
adaptor provides a set of methods to the middleware that encapsulates the native inter-
face of the external system. This way, the (possibly complicated) native interface does
not need to be publicly known in order to access its functionality. Instead, other sub-
systems can simply use the methods provided by the adaptor. For example, to send an
e-mail via the communications system, it is sufficient to call the respective method of
the communications adaptor which will then take care of constructing a RFC822-
compliant message [9] from the supplied parameters, setting up a session with the
SMTP server and sending the e-mail. Furthermore, the encapsulation allows for an

2 In case of an integration in an existing infrastructure methods, concepts and software tools

have to be provided an used. For this electronic commerce portal IPSI an integration by con-
ventional domain specific highly individual application systems are necessary. These individ-
ual application systems are already used in insurance companies, authorities and financial or-
ganizations, etc.. These systems are also called legacy systems, e.g. partner management da-
tabase in insurance companies or a billing system.

94 V. Gruhn and L. Schöpe

easy change of external systems: If a system’s native interface changes, only its own
adaptor must be rewritten while all other subsystems remain untouched.

The user interacts with the electronic commerce portal primarily via a web browser
(other user agents such as mobile phones are also allowed by the system architecture).
This has important implications for the control flow within the system: In traditional
software systems, the dialog can be controlled by the system to a large extent: For
example, the system can open a modal dialog box at any time, forcing the user to take
some specific action before he can do anything else [17]. On the web, however, all
actions are initiated by the user. The server cannot push information to the browser
that the user did not request.3

Consequently, the external systems (office, content management etc.) of the electronic
commerce portal remain passive and act only on user requests passed to them via the
path depicted in Figure 2:

HTML Page /
WML Deck

Dispatcher

Search
Controller

Content
Management

Office Legacy

HTTP Request HTTP Response

Request Object Response Object

Query
Object

Result
Object

Formatter

User Interface

C
om

m
un

ic
at

io
n

vi
a

D
ire

ct
 M

et
ho

d
C

al
ls

C
om

m
un

ic
at

io
n

vi
a

M
id

dl
ew

ar
e

(A
da

pt
or

s
no

t s
ho

w
n

fo
r

cl
ar

ity
)

Result
ObjectResult

Object

Query
Object Query

Object

Response
Object

Fig. 2. Communication within the Electronic Commerce Portal

Every user action like clicking on a link or submitting a form generates an HTTP
request [11] which is received by a central dispatcher. The dispatcher parses the HTTP
request string, builds a request object from its contents and passes it to the controller
that is responsible for handling the requested task. The search controller and admin
controller implement the functionality of the search and portal administration systems
mentioned earlier; all other transactions involving the external systems are handled by
the workflow controller.

3 This is true for a user interface built from plain HTML pages. Of course, one might conceive

a client-side Java applet displaying information pushed to it by the server. However, this
would require a Java-capable user agent, ruling out most of the currently available mobile
agents like WAP phones, organizers etc. Plain HTML, on the other hand, makes the least as-
sumptions about the target platform, and the subsystems producing it can easily be adapted to
generate similar formats like Wireless Markup Language (WML).

A Software Process for an Integrated Electronic Commerce Portal System 95

The controllers might be considered the brains of the electronic commerce portal:
They evaluate the request objects passed by the dispatcher. Depending on the type of
request, they send commands to or query information from the external systems, con-
solidate the results and return them to the dispatcher. To achieve this, the specific
workflow necessary to fulfill any given request is hard-coded into the respective con-
troller. For example, upon receiving a request to search for a particular person in all
the external systems, the search controller queries the office, content management and
legacy systems and returns the combined results to the dispatcher.

The dispatcher then forwards the response object received from the controller to the
formatter. This subsystem is responsible for converting the information contained in
the response object into a format the user agent can render. In most situations, the
preferred output format will be Hypertext Markup Language (HTML) [18] which is
accessible with a wide range of user agents. For more exotic user agents such as WAP
phones and organizers, other formatters can generate output formats like Wireless
Markup Language (WML) [26]. This flexibility is one main advantage of the separa-
tion between formatters and controllers: Since the implementation of the user interface
is concentrated in one dedicated system, the visual presentation of information can be
changed or expanded without touching any of the systems actually providing the in-
formation.

Because of performance considerations and special system requirements, most ex-
ternal subsystems and the web server run on separate computers. This distributed
architecture requires a middleware like CORBA to coordinate the calling of methods
and passing of objects among the different subsystems. Of course, using the middle-
ware is not necesssary within single subsystems such as the user interface: For exam-
ple, the dispatcher calls a method of the formatter directly to pass a response object
received from a controller.

The dispatcher and the controllers, however, might run on different machines.
Thus, they exchange objects via the middleware. Two models of communication were
considered during the design phase of the project:
1. Publisher/Subscriber Model: The dispatcher publishes a request object via the

middleware and announces its availability with an event that describes the type of
request. Controllers can subscribe to events that are relevant to them and get a copy
of the respective request object from the middleware.

2. Explicit Call Model: Based on the type of request, the dispatcher decides which
controller(s) it must call to pass the request object to via the middleware.

In the publisher/subscriber model, the dispatcher is effectively reduced to a mecha-
nism for converting HTTP request strings to request objects since it does not know
which controller is responsible for which type of request. While this may at first seem
like an elegant decoupling, there are some pitfalls: Although the “sending“ part of the
dispatcher does not need to be changed when a new controller is added to the sub-
scriber list, the “receiving“ part must still be prepared to accept result objects from the
additional controller. Regarding the effort for defining interfaces between the dis-
patcher and the controllers, the publisher/subscriber model holds no advantage over
the explicit call model: Both dispatcher and controllers need to know which attributes
are defined for request objects of any type, regardless of the means by which the ob-

96 V. Gruhn and L. Schöpe

jects are transported. More problems arise from the multi-user environment of the
electronic commerce portal: The dispatcher needs to know which result object re-
turned by the controller corresponds to which request object passed to it. In the ex-
plicit call model, this mapping is implicitly provided by the call stack of the middle-
ware. In the publisher/subscriber model, each request object (and the objects passed
between controllers and subsystems) would have to be tagged with a unique identifier
in order to track the incoming result objects – an unnecessary overhead.

Controllers and subsystems communicate by exchanging “business objects“ [2], i.e.
entities that are central to the workflow in the electronic commerce portal. The fol-
lowing business objects are therefore known to all controllers and subsystems:
� User
� Contact
� Appointment
� Task
� Message

� Shop Item
� Order
� Order History
� Search Request
� Search Result

 To schedule an appointment, for example, the workflow controller creates an ap-
pointment object from the data received by the dispatcher and passes it to a method of
the office subsystem that adds the appointment to the user’s calendar. If the user
chooses to be reminded of the appointment by e-mail in time, the workflow controller
additionally creates a message object, connects a copy of the appointment object to it
and passes it to the communications system which will queue it for e-mail delivery at
the time requested by the user.

 3 Realization

 The first phase in the process of realizing the electronic commerce portal was an
analysis of the content and function requirements. To gain insight into the portal users’
needs, the project team visited several insurance companies. Through demonstrations
of systems currently used by insurance agents and discussions with developers, the
team learned about the typical tasks an insurance agent performs in his daily work and
how these can be supported by software solutions. The results of the analysis were
organized by breaking the more comprehensive tasks down into singular activities
which were then prioritized and documented in requirement forms.

 Based on the requirement forms, the subsystems office, content management, pro-
curement, communications, legacy, search and administration were identified. For
each of these subsystems, a make-or-buy decision had to be made. After evaluating
existing solutions and considering the effort for developing a subsystem from scratch
vs. integrating the existing solution, the team chose the integrative approach for most
systems, namely:

� Office Outlook 98 by Mircosoft Corporation [5]
� Content Management Pirobase 4.0 by PiroNet AG [19]
� Procurement SmartStore 2.0 by SmartStore AG [22]

A Software Process for an Integrated Electronic Commerce Portal System 97

� Communications
 E-mail JAVA-Mail by Sun Microsystems, Inc. [23]
 Fax Sendfax – Freeware Linux 6.3 (i386) by SuSE GmbH

[24]
 SMS Sendfax – Freeware Linux 6.3 (i386) by SuSE GmbH

[25]
� Legacy sample partner database of the Continentale Versi-

cherung
The search and administration systems were not classified as external systems but

as controllers since they actively request or modify information of the other systems.
To test the feasibility of these decisions, the team programmed cut-through proto-

types, i.e. “quick-and-dirty” implementations of the adaptors described in the system
architecture. The goal of these prototypes was to prove that it is possible to encapsu-
late the native interfaces of the external systems and make their key features accessi-
ble via the adaptors. This goal was met for all subsystems, clearing the way for the
next phase of the software development process.

For the object oriented design phase, the team used the Unified Modeling Language
(UML) [3]. The key features of all subsystems were modeled in use cases in order to
identify business objects and possible dependencies between the subsystems. Based on
the insights gained in this step, concrete classes were defined for each subsystem. To
ensure an easy consolidation of the results and allow for later changes to the subsys-
tems without touching any dependent classes, each subsystem is represented at the
“outside” by one boundary class. This class provides all methods other classes need to
access the subsystem. As an example, let’s consider a search request handled by the
legacy system (Figure 3):

Legacy
Boundary

Result
Decoder

Query
Encoder

Result
Encoder

Query
Decoder

DBMS

W
o

rk
fl

o
w

C
o

n
tr

o
lle

r

LegacyPartner Database

XML stream

XML stream

Adaptor Portal Subsystem

Middleware
(CORBA)

Class

Insurance Company System

Fig. 3. Integration of Legacy System

The large box in the middle is a view inside the legacy subsystem that we know from
previous figures. The smaller boxes inside represent classes. Because only the legacy
boundary class is connected to the workflow controller via the middleware, in our
example the controller does not pass the search request object directly to the query
encoder. Instead, the search request is passed to the legacy boundary class which then
passes it to the query encoder. This class is a part of the adaptor that, as discussed

98 V. Gruhn and L. Schöpe

earlier, hides the native interface of the external system from the portal subsystem: In
the case of the legacy system, queries and results of the insurance company‘s partner
database are XML-encoded [4] for maximum platform and transport independence.
The XML-encoded search query is run against the insurance company‘s database, and
the encoded result is returned to the legacy subsystem where the result decoder (an-
other part of the adaptor) creates a search result object and passes it to the legacy
boundary class, which returns it to the workflow controller.

After consolidation of the designs for subsystems, controllers and user interface, the
team entered the implementation phase. Most classes were implemented in the Java
programming language [12], only the adaptor for the office system uses Microsoft
Visual C++ [14] code to access the Microsoft Outlook 98 API.

Figure 4 shows the homepage of the electronic commerce portal. After logging into
the system, the insurance agent is presented with all information that is relevant to him
that time: Personal messages, articles of interest from the content management system,
scheduled appointments and due tasks from the office system, events and items from
the procurement system. Legacy applications like the partner database and a provi-
sioning system are accessible via links on the homepage. A search interface allows for
meta searches in selected areas of the portal.

Fig. 4. Electronic Commerce Portal

The process model for the development of the electronic commerce portal IPSI will be
shown in a rough scheme in figure 5. Funsoft-Nets are used for process modeling [10].
The process model consists of the subprocess models (requirement specification, sub-
system evaluation, system design, prototype development, realization, integration- and
system test, user interface development and realization).

A Software Process for an Integrated Electronic Commerce Portal System 99

Fig. 5. Software Development Process for the Electronic Commerce Portal

4 Conclusion

In building the IPSI system we had to recognize that the implementation of a portal
system is an integration engineering task. This had an important impact onto the soft-
ware process deployed. Backend integration is based on middleware, frontend inte-
gration is based on a commonly used user interface which demanded for careful de-
sign.
Most requirements for IPSI were fulfilled by integrating standard tools. In order to
effectively plan the software process for building IPSI, it was crucial to use prototypes
(compare above). Only after implementing these prototypes we were able to assess the
feasibilty of the architecture and only then we were able to calculate duration of the
tasks identified and efforts needed for these tasks. The productive use of IPSI showed
that the openness of the architecture is a crucial issue. Many further legacy systems
had to be added after the initial release, standard tools were exchanged for individual
customers. All these modifications depend on a clear and modular architecture. With
hindsight, it would have been useful to develop IPSI as a component-based system on
the basis of a standard component model like JavaBeans or COM [13].

Summing this up, the effort for implementing was lower than initially expected,
simply because we were able to benefit from standard tools. The kind of tasks was
different from what was initially planned, more tasks than initially planned were inte-
gration tasks. In the end only a few thousand lines of software were written, but this

100 V. Gruhn and L. Schöpe

software was used as glue between existing systems and therefore required extremely
detailed design and careful testing.

References

1. Adam, N., Yesha, Y. (ed.): Electronic Commerce: An Overview. In: Adam, N, Yesha,
A.: Electronic Commerce. Lecture Notes on Computer Science, Vol 1028, Springer-
Verlag, Berlin Heidelberg New York (1995) 4–12

2. Baker, S., Geraghty, R.: Java for Business Objects. In: Carmichel, A.: Developing
Business Objects. SIGS Cambridge University Press USA (1998) 225-237

3. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User Guide.
Addison Wesley, Reading, MA, USA (1999)

4. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML)
1.0 W3C Recommendation 10, Feb. 1998, http://www.w3.org/TR/1998/REC-xml-
19980210 (cited: March 2000)

5. Byne, R.: Building Applications With Microsoft Outlook 2000 Technical Reference,
Microsoft Press (2000)

6. Chesher, M., Kaura, R.: Electronic Commerce and Business Communiations.
Springer Verlag, Berlin Heidelberg New York (1998)

7. Connelly, D.W.: An Evaluation of the World Wide Web as a Platform for Electronic
Commerce. In: Kalakota, R., Whinston, A.: Readings in Electronic Commerce.
Addison Wesley Longman Inc. reading, MA, USA (1996) 55-70

8. Coyle, F.P.: Legacy Integration –Changing Perspectives. In: IEEE Software, Vol. 17,
No. 2 (2000) 37-41

9. Crocker, D.H.: RFC822: Standard for the Format of ARPA Internet Text Messages.
ftp://ftp.isi.edu/in-notes/rfc822.txt (cited: March 2000)

10. Deiters, W., Gruhn, V.: The Funsoft Net Approach to Software Process Management.
In: Int. Journal of Software Engineering and Knowledge Engineering, Vol. 4, No. 2
(1994) 229-256

11. Fielding, R., Gettys, J., Mogul, H., Frystk, L., Masnier, P., Leach, T, Berners-Lee, H.:
RFC2616: Hypertext Transfer Protocol – HTTP 1.1.

12. ftp://ftp.isi.edu/in-notes/rfc2616.txt (cited: March 2000)
13. Gosling, J., Joy, B., Steels, G.: The Java Language Specification. Addison Wesley

Longman, Inc. Reading, MA, USA (1996)
14. Gruhn, V., Thiel, A.: Komponentenmodelle – DCOM, JavaBeans, Enterprise Java-

Beans, CORBA. Addison-Wesley, München (2000)
15. Kruglinski, D.J.: Inside Visual C++ Version 5. Microsoft Press, 1999
16. Lewandowski, S.: Frameworks for Computer-Bases Client/Server Computing. In:

ACM Computing Surveys, Vol 30, No. 1 (1998) 3-27
17. Lincke, D., Zimmermann, H.: Integrierte Standardanwendungen für Electronic Com-

merce – Anforderungen und Evaluationskriterien. In: Hermanns, A., Sauter, M.
(Hrsg.) Management-Handbuch Electronic Commerce, Verlag Franz Vahlen
München (1999) 197-210

18. Nielsen, J.: The Difference Between Web Design and GUI Design. Alertbox for May
1, 1997 http://www.useit.com/alertbox/9705a.html (cited: March 2000)

A Software Process for an Integrated Electronic Commerce Portal System 101

19. Pemberton, S. (et.al.): XHTML™ 1.0: The Extensible HyperText Markup Language.
A Reformulation of HTML 4 in XML 1.0. W3C Recommendation 26 January 2000
http://www.w3.org/TR/2000/REC-xhtml1-20000126 (cited: March 2000)

20. PiroNet AG: Pirobase© System Architecture. http://www.pironet.com (cited: March
2000)

21. Rhee, H., Riggins, F.: Toward a unified view of electronic commerce. In: Communi-
cations of the ACM, Vol. 41, No. 19 (1998) 88-95

22. Schmidt, B., Lindemann, M.: Elements of a Reference Model for Electronic Markets.
In: Proceedings of the 31st Annual International Conference on Systems Science
HICSS’98, (1998) 193-201

23. SmartStore AG: SmartStore Standard Edition 2.0. http://www.smartstore.de
24. (cited: March 2000)
25. Sun Microsystems Inc.: JavaMail 1.1.3™ Release. http://java.sun.com/
26. (cited: March 2000)
27. SuSE GmbH: SuSE Linux 6.3 (i386) – November 1999 “sendfax”
28. http://www.suse.de/en/produkte/susesoft/linux/Pakete/paket_sendfax.html
29. (cited: March 2000)
30. SuSE GmbH: SuSE Linux 6.3 (i386) – November 1999 “yaps”
31. http://www.suse.de/en/produkte/susesoft/linux/Pakete/paket_sendfax.html
32. (cited: March 2000)
33. Wireless Application Forum: Wireless Application Protocol: Wireless Markup Lan-

guage Specification. Version 1.1, 16 June 1999.
34. http://www1.wapforum.org/tech/documents/SPEC-WML-19991104.pdf (cited: March

2000
35. Zwass, V.: Electronic Commerce: Structure and Issues. In: International Journal of

Electronic Commerce, Vol. 1, No.1 M.E. Sharpe, Armonk, NY, USA (1996) 3-23
36. Zwass, V.: Structure and Macro-Level Impacts of Electronic Commerce: From Tech-

nological Infrastrukture to Electronic Marketplaces. In: Kendall, K.E.: Emerging In-
formation Technology Sage Publications (1999)

http://www.suse.de/en/produkte/susesoft/linux/Pakete/paket_sendfax.html
http://www.suse.de/en/produkte/susesoft/linux/Pakete/paket_sendfax.html

	1 Introduction
	2 Architecture of the IPSI System
	3 Realization
	4 Conclusion
	References

